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Abstract: The paper structure of historical prints is sort of a unique fingerprint. Paper with the
same origin shows similar chain line distances. As the manual measurement of chain line distances
is time consuming, the automatic detection of chain lines is beneficial. We propose an end-to-end
trainable deep learning method for segmentation and parameterization of chain lines in transmitted
light images of German prints from the 16th Century. We trained a conditional generative adversarial
network with a multitask loss for line segmentation and line parameterization. We formulated a fully
differentiable pipeline for line coordinates’ estimation that consists of line segmentation, horizontal
line alignment, and 2D Fourier filtering of line segments, line region proposals, and differentiable
line fitting. We created a dataset of high-resolution transmitted light images of historical prints with
manual line coordinate annotations. Our method shows superior qualitative and quantitative chain
line detection results with high accuracy and reliability on our historical dataset in comparison to
competing methods. Further, we demonstrated that our method achieves a low error of less than
0.7 mm in comparison to manually measured chain line distances.

Keywords: line segmentation; line detection; line parameterization; generative adversarial networks;
Fourier transform; differentiable line fitting; chain lines; paper structure; historical prints

1. Introduction

Since ancient times, paper has played a prominent role as a carrier for information.
In the 16th Century, the only available paper was laid paper, which was manually produced
in paper mills. Wood, old rags, and other ingredients were stamped and macerated in
water into a pulp of fibers. Then, the paper was scooped by hand using a mold with a wire
sieve made of closely spaced “laid” wires and perpendicular more widely spaced “chain”
wires. After scooping the fibers from the vat, the remaining fibrous web on the wire sieve
forms the paper [1]. On its surface, the grid pattern of the wires is imparted, as can be seen
in the transmitted light photographs in Figure 1a,c,e,g. In addition, a watermark can be
embedded into the paper structure as a seal of quality and origin by placing bent metal
wires on the sieve. Concerning laid paper, the distances between the parallel chain lines
vary across the sieve, but are approximately 25–30 mm [2]. For every mold, the chain lines
form a unique pattern. Papers created by the same mold show a similar pattern of chain line
distances. The impression of the sieve provides a unique conclusion to identify the mold.
Images formed by the same mold are called moldmates [1]. Papers from different origins
have different line sequences. Characteristics of the paper structure, such as the shape
and placement of watermarks, chain line intervals, and the density of laid lines provide
possibilities for computer vision to support art historical research. Apart from analyzing
the motif itself, e.g., concerning the degree of wear, also, chain line distances can give hints
about dating, author assignment, and the chronology of writings and prints [3]. For further
refinements, chain line intervals can be analyzed in combination with the density of laid
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lines, watermarks, and histological findings on the fibers. Traditionally, chain line distances
are manually measured by art technologists during the examination and visual inspection
of the individual prints, which is very time consuming.

In this paper, we propose an end-to-end trainable method for segmentation and pa-
rameterization of chain lines in transmitted light images of German prints from the 16th
Century. Our method exploits the power of deep neural networks in combination with
prior knowledge from image and signal processing. We trained a conditional generative
adversarial network by using a multitask loss for line segmentation and line parameteriza-
tion. For the estimation of line coordinates, we designed a fully differentiable pipeline that
comprises the steps of line segmentation, horizontal alignment and 2D Fourier filtering of
line segments, line region proposals, and differentiable line fitting. For training and evalua-
tion, we created a dataset of high-resolution transmitted light images of historical prints
for which we manually annotated line coordinates. Our ChainLineNet learns to detect the
chain lines with high reliability even if there are interferences caused by watermarks or if
the lines are partly occluded by the ink of the artwork; cf. Figure 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. The paper structure in historical prints consists of chain and laid lines, which are perpen-
dicular to each other. Examples using transmitted light photography (a,c) for vertical and (e,g) for
horizontal chain lines are shown. Our ChainLineNet effectively detects the chain lines (b,d,f,h);
even so, these are partly occluded by the ink of the artworks. Detail images: (a) Hans Sebald Beham,
Martin Luther as Junker Jörg, Woodcut, Germanisches Nationalmuseum Nürnberg, H1933; (c) Un-
known, Martin Luther, Woodcut, Landesbibliothek Coburg, P I 6/12; (e) Lucas Cranach the Elder,
Martin Luther as Junker Jörg, Woodcut, Klassik Stiftung Weimar, Bestand Museen, DK 181/83; (g) Hans
Baldung Grien, Martin Luther as Augustinian monk, Woodcut, Klassik Stiftung Weimar, Herzogin
Anna Amalia Bibliothek, Aut. Luther 1520:64; images captured by Thomas Klinke; all rights reserved
by the respective museum/library.

2. Related Work

To digitize the paper structure of historical prints, several imaging techniques, e.g., beta-
radiography, transmitted light photography, transmitted infrared, or thermography, can be
applied. Transmitted light photography is a very fast application, inexpensive, and very
easy to handle. Hence, additional image processing might be necessary due to interferences
such as ink that remain visible. These interferences disappear in the images using the other
modalities, but especially beta-radiography is only applicable for large institutions due to
the necessary technical and financial input.

2.1. Segmentation and Detection of Chain Lines

There are a few approaches for the automated segmentation of chain lines of paper.
Van der Lubbe et al. [3] assumed straight and vertical chain lines for chain line detection in
radiography. They used uniform filtering and morphological opening and closing operators
as the preprocessing and applied a vertical projection to detect the vertical lines as peaks of
the projection. Atanasiu [4] proposed a software measurement tool to analyze the density
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of laid lines by using the bidimensional discrete fast Fourier transform. In a preprocessing
step, an emboss edge-enhancing high-pass filter reduces noise; however, the orientation
of the laid lines has to be determined beforehand. Van Staalduinen et al. [5] presented an
approach for moldmate matching using the specific paper features of chain and laid lines.
The lines are detected by means of the shadow around the chain lines. The sequences of line
distances for moldmate matching are computed with a combination of the discrete Fourier
transform and Radon transform based on the assumption of straight and equidistant lines.
Hiary et al. [2] focused on the digitization, extraction, and graphical representation of
watermarks. They used backlight scanning and image processing such as mathematical
morphological operations to automatically extract and convert watermarks to graphical
representations. In an intermediate step, they rotated the image to upright the chain lines
by means of chain line detection and Radon transform. Johnson et al. [1] published a
method to find moldmates among Rembrandt’s prints in beta-radiographs. Their chain
line pattern matching approach uses unique chain spacing sequences in the paper structure
rather than watermarks to identify the moldmates. Based on the assumption of straight,
but not necessarily parallel lines, they rotated the chain lines to the vertical and obtained
the angle of rotation by applying the Radon transform. Finally, the lines were detected
using a vertical filter and the Hough transform.

In our previous work [6], we trained a convolutional neural network (CNN) to au-
tomatically segment the chain lines in artworks. Therefore, we employed the UNet [7]
as the network architecture and proposed two postprocessing steps by employing either
random sample consensus (RANSAC) [8] or the Hough transform to locate and parameter-
ize complete lines in the binarized segmentation results. First, we determined the global
orientation of the lines (horizontal or vertical) based on applying the Sobel filter. For the
RANSAC-based approach, we extracted line segments from the segmentation mask using
connected components and filtered out too small or falsely oriented line segments. The
remaining line segments were grouped using agglomerative clustering, and RANSAC
was utilized to fit lines through each group of points. For the Hough-based approach, we
applied Hough voting on the segmentation masks and used agglomerative clustering to
merge line predictions.

2.2. Segmentation and Detection of Lines

Looking more generally at the task of line detection in the fields of wireframe detection
and semantic and horizon line detection, deep learning has been extensively applied.

Wireframe detection is the detection of line segments and junctions in a scene to
describe all kinds of geometric objects or architectures [9]. Huang et al. [9] proposed
a two-stage method that predicts heat maps for the line segments and junctions using
two CNNs and combines junctions and lines by applying several postprocessing steps.
To train their method, they created a large wireframe benchmark dataset. Zhou et al. [10]
designed an end-to-end trainable L-CNN that directly predicts vectorized wireframes.
The L-CNN consists of a stacked hourglass network as the feature extraction backbone,
a heat-map-based junction proposal module, a line-sampling module that generates line
candidates based on the predicted junctions, and a line verification module, for which
the line of interest (LoI) pooling layer is utilized, which compares line segments with
corresponding positions in the feature maps of the backbone. The holistically-attracted
wireframe parser (HAWP) [11] was built on the L-CNN and introduced a novel line segment
reparameterization by using a holistic attraction field map that assigns each pixel to its
closest line segment. Lin et al. [12] proposed in their deep Hough transform line priors
method to combine line priors with deep learning by incorporating a trainable Hough
transform block into a deep network and performing filtering in the Hough domain with
local convolutions. For the application of line detection on the Wireframe datasets, they
used the L-CNN [10] and the HAWP [11] as backbones and replaced the hourglass blocks
with their Hough transform blocks.
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For the application of semantic lines or horizon detection in natural scenes, Lee et al. [13]
proposed the VGG16-based semantic line network (SLNet) with line pooling layers, which
combines line detection as a multitask loss of classification and regression. The deep
Hough transform method by Zhao et al. [14] incorporates the Hough transform into a
one-shot end-to-end learning pipeline by using a CNN encoder with feature pyramids for
feature extraction and performing the line detection in Hough space. Nguyen et al. [15]
transferred the ideas from object detection to design the LS-Net for power line detection
that uses a CNN with two heads: one for classification and the other for line regression.
Brachmann et al. [16] combined neural guidance with differentiable RANSAC (DSAC) [17]
for horizon line estimation.

2.3. Contour Detection Using Generative Adversarial Networks

Another related group to our chain line segmentation method consists of contour detec-
tion methods using generative adversarial networks (GANs), as the chain lines and contours
have a similar shape, and hence, both are sparse segmentation tasks. Contour detection
datasets usually contain multiple ground truth annotations per image by different anno-
tators, since the amount of annotated lines differs between the annotators depending on
the subjective decision of the individual annotator whether a contour is important enough
to be drawn. ContourGAN [18] uses a conditional GAN with a VGG16-based generator
network for contour detection in natural images. The adversarial loss is combined with a
binary cross-entropy content loss for which the set of ground truth contour images is linearly
merged into a single ground truth image. Art2Contour [19] utilizes a conditional GAN
with a ResNet-based generator network for salient contour detection in prints and paintings.
Art2Contour is trained with a combined loss of the cGAN loss and a task loss consisting
of multiple regression terms, which separately treat the single ground truth images. Our
method was based on the network architecture used by Art2Contour, but we introduced a
novel multitask loss to simultaneously learn line segmentation and line parameterization.

3. Method

Our proposed method for the segmentation and detection of chain lines in transmitted
light images of historical prints is illustrated in Figure 2. In this section, we introduce the
network architecture, the end-to-end trainable pipeline, the loss functions, and inference.

Figure 2. ChainLineNet: End-to-end trainable segmentation and parameterization of chain lines using a conditional
generative adversarial network-based approach. The generator network is trained using a multitask loss consisting of
the segmentation task and the line parameterization task. We propose a fully differentiable pipeline for line coordinates’
estimation that is composed of line segmentation, primary line orientation prediction, horizontal alignment of the lines,
2D Fourier filtering, line region proposals, and line fitting with differentiable sample consensus (DSAC) [17]. Detail
transmitted light image (input patch): Unknown, Compilation sheet with round portraits, Woodcut, Kupferstichkabinett,
Staatliche Museen zu Berlin, 44-1884; captured by Thomas Klinke; all rights reserved by the respective museum.
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3.1. Chain Line Segmentation Network Architecture

Our chain line segmentation network is a conditional generative adversarial network
(cGAN) [20] consisting of a generator and discriminator network. Our generator network
is the ResNet-based [21] encoder–decoder architecture that was introduced for style trans-
fer [22], having ResNet blocks in the bottleneck, and in contrast to UNet [7], it does not
have skip connections between the encoder and decoder [19,23]. As the discriminator
network, we used a regular global GAN that has been shown to be effective for contour
detection [19,23].

3.2. End-to-End Training of Line Segmentation and Parameterization

We jointly trained the generator network for the tasks of line segmentation and
line parameterization in an end-to-end fashion by only using differentiable modules and
functions inspired by known operator learning [24], while the discriminator network only
evaluates the segmentation output against the ground truth segmentation mask.

In generative adversarial networks (GANs), the generator network and the discrim-
inator network are alternately optimized. The generator G is fed with a random noise
vector z to generate the output image y, while the discriminator D is trained to distinguish
real images from fake images. In the case of conditional GANs, the output of the generator
y is additionally conditioned to an input, e.g., an image x. Thus, the generator is trained to
generate realistic-looking images that are directly related to the input images. The objective
function of cGAN is formulated as:

LcGAN(x, y, z) = min
G

max
D

Ex,y[log D(x, y)]

+Ex,z[log (1− D(x, G(x, z))] .
(1)

The cGAN principle can be directly applied to the line segmentation task. The genera-
tor G learns to produce precise line segmentation masks y ∈ Rs1×s2 for the input artwork
images x ∈ Rs1×s2 , encouraged by the discriminator D, which learns to detect those fake
ones. The cGAN loss is generally combined with a task loss. We extended this approach by
also including the line coordinates’ estimation process for the generator task loss:

LG(x, y, g, h1, · · · , hm, p, q) = LcGAN(x, y) + λ0 LTask(y, g, h1, · · · , hm, p, q) , (2)

where g ∈ Rs1×s2 is the ground truth segmentation mask, {h1, · · · , hm} the line hypotheses
sampled for DSAC, p ∈ RM×4 the predicted line coordinates, and q ∈ RN×4 the ground
truth lines coordinates with {xi

0, yi
0, xi

1, yi
1} being the start and end points of the lines.

Our multitask loss is defined as the weighted sum of the line segmentation task and line
parameterization task:

LTask(y, g, h1, · · · , hm, p, q) = λBCELBCE(y, g) + λDICELDICE(y, g)

+ λDSACLDSAC(h1, · · · , hm, q) + λMLELMLE(p, q),
(3)

where λBCE, λDICE are the weights for the binary cross-entropy loss (BCE) and Dice loss
(DICE) for the segmentation task and λDSAC, λMLE are the weights for the DSAC loss [17]
and the mean line distance error loss (MLE) for the line parameterization task.

3.3. Line Parameterization Pipeline and Line Loss Functions

The prediction of the line parameters is subdivided into the parts of line segmentation,
prediction of the main line orientation to horizontally align the lines, 2D Fourier filtering,
line region proposals, and line fitting with differentiable sample consensus (DSAC) [17],
as illustrated in Figure 2. As chain lines are nearly parallel to each other and have similar
distances between them, we used the 2D fast Fourier transform (FFT) to find the main
orientation of the lines in the images. The 2D Fourier representation of the segmentation
mask shows the response to the dominant direction of the lines.
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As can be seen in the centered 2D Fourier magnitude image in Figure 3, there is one
line in the center with an orientation orthogonal to that of the chain lines in the image
domain. Hence, we extracted the k = 500 points with maximal intensity in the centered
magnitude image and fit a line through them using DSAC [17]. Then, we computed
the polar angle of the line θ f t and determined the rotation angle θrot to align the lines
horizontally by:

θrot =

{
90◦ − ‖θ f t‖ θ f t < 0,
90◦ + ‖θ f t‖ otherwise

(4)

Next, we rotated the predicted segmentation masks, the ground truth segmentation
masks, and the ground truth line coordinates; see Figure 4. The segmentation mask can
show some line segments of different orientations, for instance due to watermarks, as
these have the same intensity as chain lines in the transmitted light images. To reduce
nonhorizontal line segments, we applied a vertical filter H(u, v) in the Fourier domain to
the rotated segmentation masks F(u, v) with u, v ∈ {−N/2, N/2}:

G(u, v) = F(u, v)H(u, v), H(u, v) =

{
1 ‖v‖ < τ,
0 otherwise

(5)

As convolution with a filter kernel in the time domain is elementwise matrix multipli-
cation in the Fourier domain, we can simply multiply the 2D Fourier image with a matrix
that has only zero elements except for a vertical band of width 2τ with τ = 10 pixels at
the center.

To determine the number of lines and their rough positions, we computed the hori-
zontal profile by summing up all intensity values of the filtered segmentation mask along
the x-direction (see Figure 5). All segmented lines correspond to peaks in the profile. We
applied 1D max-pooling to the profile to obtain all local maxima. To filter out all local
maxima that most likely do not belong to the horizontal lines, we applied intensity and
spatial distance thresholding. As prior knowledge, we considered that chain lines have
approximately the same distances; hence, we first selected the peaks that have a distance of
at least 0.75 of the maximal distance of all peaks and then refined the selection by keeping
only those that have at least 0.6 of the maximal distance of the selected peaks.

(a) Predicted mask (b) 2D fast Fourier transform magnitude

Figure 3. The 2D fast Fourier transform of the predicted segmentation mask in (b) shows a centered
line whose orientation is orthogonal to the dominant orientation of the line segments in (a) the
predicted segmentation mask.



J. Imaging 2021, 7, 120 7 of 17

(a) Rotated predicted mask (b) 2D FFT magnitude

(c) 2D filter kernel (d) Filtering result

Figure 4. Two-dimensional filtering in Fourier domain to reduce nonhorizontal lines. In (a), the
horizontally aligned predicted segmentation mask, in (b), its 2D FFT magnitude, in (c), the 2D filter
kernel, and in (d), the filtering result of the rotated predicted segmentation mask is shown.

Figure 5. Selection of peaks in the horizontal profile for one example image (length of 2000 pixels)
with 7 chain lines from the validation set. The peaks are marked with an orange dot, and the final
selection of peaks after distance thresholding are additionally marked with a green cross. Then, a
bounding box is placed at the center of each selected peak.

A horizontally oriented bounding box [0, W, yi − Dthresh, yi + Dthresh] is defined for
each of the refined peak positions yi using the previously computed threshold Dthresh as
the length to both sides. In the case that no peak position can be found or can be selected,
we defined one bounding box for the entire image.

Next, we extracted for each bounding box the maximal kp points within the bounding
box region of the segmentation mask to use them for line fitting with DSAC. DSAC [17]
formulates the hard hypothesis selection of RANSAC as a probabilistic process that allows
end-to-end learning. The application of DSAC for line fitting (implementation by Brach-
mann et al.: https://github.com/vislearn/DSACLine (accessed on 14 July 2021)) consists
of the following steps:

1. Line hypothesis sampling: Based on the predicted point coordinates z, m line hy-
potheses {h1, · · · , hm} are randomly sampled by choosing for each hypothesis two
points of the point set. Each hypothesis predicts an estimate for the line parameters,
the slope a and intercept b of the line equation y = ax + b;

https://github.com/vislearn/DSACLine
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2. Hypothesis selection: A scoring function s(h) computes a score for each hypothesis
based on the soft inlier count. The hypothesis hj is selected according to the softmax

probabilistic distribution P(j; z) =
exp(s(hj))

∑k exp(s(hk))
;

3. Hypothesis refinement: The hypothesis is refined by using the weighted Deming
regression for line fitting [25], which is a special case of the total least-squares that
accounts for errors in the observations in both the x- and y-direction, for which we
used the soft inlier scores as the weights.

The DSAC loss function, which we incorporated into our task loss function, is de-
fined as:

LDSAC(h1, · · · , hm, q) = ∑
k

(
exp(s(hj))

∑k exp(s(hk))
‖|p(hk)− q‖|2

)
, (6)

where p(hk) refers to the predicted start and end points for the line hypothesis hk and q
refers to the ground truth start and end points. The start and end points of the lines are
determined as the intersection with the image borders.

Since we applied DSAC to each bounding box region separately and the bounding box
positions are determined automatically based on the segmentation output of the network,
we needed to assign one ground truth line to each bounding box. We distinguish three
cases: (1) If there is only one ground truth line inside the bounding box region, this one is
selected. (2) If the region contains multiple ground truth lines, we chose the longest line.
(3) Lastly, if there is no ground truth line inside the region, we selected the line with the
minimal distance of its start and end points to the borders of the region.

The DSAC loss minimizes the distance of the predicted lines to the closest ground
truth lines; however, if too few bounding boxes are predicted, some ground truth lines will
not be included. To account for these false negatives, we defined a second line loss term,
the MLE loss, that picks for each ground truth line the closest predicted line of the best
hypothesis hj and computes the mean error:

LMLE(p, q) =
1
N ∑

i
min(Di), D = cdist(p, q), (7)

where D ∈ RN×M is the Euclidean distance between each pair of the two collections of row
vectors of p ∈ RM×4, q ∈ RN×4, and Di is the ith row of the distance matrix.

3.4. Inference of Chain Line Segmentation and Parameterization Network

Since the network architecture is fully convolutional, the complete images are fed
to the GAN and are processed in the same manner as for training, resulting in the line
predictions of the rotated image. Hence, to obtain the final line coordinate predictions of
the original image, the inverse rotation is applied to the predicted lines.

4. Experiments and Results

In this section, we describe our dataset for chain line detection in historical prints,
we evaluate the performance of our method for line segmentation and line parameteriza-
tion, and compare it to the state-of-the-art methods and to manual line measurements.

4.1. Chain Line Dataset

The dataset consists of high-resolution grayscale transmitted light images of prints
from the 16th Century, including portraits of Martin Luther and contemporaries. For
our dataset, we selected in total 95 images in which the chain lines were recognizable by
the human eye. All images contain chain lines that are either horizontally or vertically
distributed at approximately the same distances.

We manually annotated the chain lines in the images by selecting two points on each
line and fitted a straight line through them, as illustrated in Figure 6a,b. We used the x
and y coordinates of the start and end points, as well as the corresponding mask images
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(Figure 6c) that contain the segmented ground truth lines as labels for training, validation,
and testing.

(a) Transmitted light (b) Superimposed lines (c) Ground truth mask

Figure 6. Illustration of the line annotation (a) in the transmitted light images of historical prints
by (b) selecting start and end points of the lines and (c) computing the corresponding mask images.
Image: (a) Daniel Hopfer, Martin Luther with the doctor’s cap, Etching, Germanisches Nationalmuseum
Nürnberg, K722; captured by Thomas Klinke; all rights reserved by the respective museum.

The sharp edges of the annotated lines in the mask images are smoothed by applying
a Gaussian filter with a standard deviation of 3. The images are divided into 35 images for
training, 12 images for validation, and 48 images for testing. The images were acquired
at a very high resolution with image sizes up to 5000× 6500 pixels. Since chain lines are
very fine structures that are difficult to detect, the highest possible image resolution is
recommended, but is limited by hardware constraints. To be able to feed the entire image
at once for inference using one Nvidia Titan XP GPU (NVIDIA Corporation, Santa Clara,
CA, USA), we scaled all images to the maximal length of 2000 pixels, which is sufficient
for the chain line detection task. To train the neural network, we split the scaled images of
the training and validation set into image patches of size 768× 768 pixels with an overlap
stride of 384. The image patches contain between one and five lines per patch. Patches
that do not contain any line were excluded from training. Further, we applied offline
data augmentation (see below) to double the number of training and validation patches,
resulting in 1150 training and 370 validation patches.

4.2. Implementation Details

Our method was implemented using the PyTorch framework, and the end-to-end
training and inference both ran completely on the GPU. The generator network (9 ResNet
blocks) and the discriminator network were trained from scratch for 100 epochs with early
stopping by using the Adam optimizer, a learning rate of η = 0.0002 with linear decay to 0
starting at Epoch 50, momentum (0.5, 0.999), a batch size of 2, λ0 = 1000 [19], λBCE = 0.5,
λDICE = 0.5, λDSAC = 0.5, and λMLE = 0.5. For DSAC, m = 64 hypotheses are sampled
based on kp = 500 points from each bounding box per patch or kp = 1300 points from each
bounding box per image.

Prior to training, we augmented our training and validation set in an offline manner
with rotated images, i.e., rotations by 90 degrees were applied to produce the same number
of vertical and horizontal lines. During training, we applied online data augmentation
(color jittering, blurring, horizontal and vertical flipping, and rotation with angles uni-
formly sampled in the range of (−20, 20) degrees) only to the training set, and not to the
validation set.

4.3. Evaluation of Line Segmentation

In this section, we compare different architectures for the task of chain line segmen-
tation using pixelwise precision, recall, and the Dice coefficient (i.e., pixelwise F1-score)
of the predicted segmentation results and ground truth segmentations. To compute the
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metrics, we applied a threshold of 0.5 to binarize the segmentation masks. For this experi-
ment, all networks were trained only for the segmentation task (i.e., λBCE = λDICE = 0.5,
λDSAC = λMLE = 0). We compared the UNet (with feature dimension F = 16; 1, 942, 289
parameters, and F = 64; 31, 036, 481 parameters) and the ResNet-based encoder–decoder
architecture (F = 64; 11, 370, 881 parameters) alone and plugged into the generative ad-
versarial training as generator networks. As summarized in Table 1 for the validation
set, all network architectures achieve higher recall than precision. Precision is highest for
the small UNet-GAN and recall for the ResNet-GAN, directly followed by the ResNet
encoder–decoder (ResNet-E-D). The Dice coefficient, which combines the pixelwise preci-
sion and recall into one measure, is also highest for the ResNet-GAN and second best for
the ResNet encoder–decoder. Concerning the Dice coefficient, UNet seems not to profit
from adversarial training in our specific case. Based on these observations, we chose the
ResNet-GAN architecture for our end-to-end trainable line segmentation and detection
method.

Table 1. Evaluation of pixelwise precision, recall, and the Dice coefficient for chain line segmentation
of the validation set with 12 images. Best scores are highlighted in bold.

Method Precision Recall Dice Coefficient

UNet (F = 16) 0.4046 0.5070 0.4464
UNet (F = 64) 0.3958 0.5034 0.4392
UNet-GAN (F = 16) 0.4283 0.4787 0.4437
UNet-GAN (F = 64) 0.3829 0.4591 0.4108
ResNet-E-D (F = 64) 0.3855 0.5935 0.4628
ResNet-GAN (F = 64) 0.3920 0.6001 0.4696

4.4. Evaluation of Line Detection and Parameterization

For the evaluation of line detection and parameterization, we compared the number
of predicted lines using precision, recall, and the F1 score. Therefore, we counted the
number of true positives, false positives, and false negatives based on a pixel distance
threshold of 50 by computing the distance between the start and end point of the predicted
lines and ground truth lines that were manually annotated on the digital images. As a
metric, we computed the mean pixel differences of chain line positions w. r. t. the ground
truth line coordinates only for the true positive lines. Furthermore, we compared the
automatically computed chain line distance intervals with the manual measurement of an
art technologist, who has measured the chain line distance intervals directly on the physical
paper during his art technological examination. To convert the predicted pixel distance
intervals into distance intervals in millimeters such that these can be directly compared to
the physical measurements, we scaled the images based on the manually measured width
of the artwork. For the chain line distance comparison, we only considered images in
which both the number of true positive lines and the total number of detected lines differs
only at most by about 2 lines from the number of reference lines by the art technologist. We
used cross-correlation to automatically find the best position to arrange the two distance
intervals as they can be shifted against each other if one or two lines are not detected. Then,
we computed the mean absolute difference of the overlap of both intervals.

4.4.1. Ablation Study

We evaluated the influence of our ChainLineNet using all task loss terms in contrast
to setting individual terms to zero. First, we compare the line detection results in Table 2
for the test set. By using our novel multitask loss consisting of the segmentation losses
(BCE+DICE) and the line parameterization losses (DSAC+MLE), we achieved a gain in the
F1 score of about 1% in comparison to training the network only for the segmentation task
(ChainLineNet-2) and of about 2% in comparison to the end-to-end training only by using
the BCE+DICE+DSAC losses (ChainLineNet-1). The DSAC loss alone does not consider
false negatives, hence resulting in a lower recall.
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Table 2. Evaluation of precision, recall, and the F1 score of chain line detection for the test set with 48 images. The number
of true positives (TP), false positives (FP), and false negatives (FN) are determined based on a distance threshold of 50 pixels
between the predicted and ground truth lines. Best scores are highlighted in bold.

Number TP FP FN Precision Recall F1 Score
of Lines (%) (%) (%)

Ground truth (manually annotated) 342 342 0 0 100.00 100.00 100.00
Reference (manually measured) 339 339 0 3 100.00 99.12 99.56

PatchDeepHough 528 307 221 35 58.14 89.77 70.57
PatchUNet-Hough 228 175 53 162 76.75 51.93 61.95
PatchUNet-RANSAC 325 305 20 32 93.85 90.50 92.15

ChainLineNet-1 (BCE+DICE+DSAC) 323 315 8 27 97.52 92.11 94.74
ChainLineNet-2 (BCE+DICE) 330 322 8 20 97.58 94.15 95.83
ChainLineNet (BCE+DICE+DSAC+MLE) 333 327 6 15 98.20 95.61 96.89

Secondly, we compared the difference of the line positions between the predicted
and ground truth lines in Figure 7 for the test set. The line error was only calculated for
true positives. The mean line error of true positives lies between 7 and 8 pixels with the
lowest error for ChainLineNet-2 (only segmentation), followed by ChainLineNet (all losses)
and ChainLineNet-1 (segmentation + DSAC). However, the results are very close, and the
number of true positives of the ChainLineNet is a bit higher, which could be a reason for
the slightly higher pixel error of almost 0.6 in comparison to ChainLineNet-2.

Lastly, we compare in Figure 8, for the test set, the distance intervals for the images
that contain a suitable number of lines with the reference distance measurements. For this
comparison (see Figure 8b), only one image was excluded, giving a success rate of about
98% for all versions of ChainLineNet. The mean difference of the distance intervals
(Figure 8a) is below 1 mm for all three variants, whereas ChainLineNet (all losses) achieves
the best result, directly followed by ChainLineNet-1 (with DSAC) and ChainLineNet-2
(only segmentation) being a bit inferior.
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Figure 7. Comparison of the mean pixel line error between the true positive predicted line coordinates
and the ground truth line coordinates for the test set. Our ChainLineNet (complete task loss) is
compared to the end-to-end training with the task losses BCE+DICE+DSAC (ChainLineNet-1),
to the training using only the segmentation task losses BCE+DICE (ChainLineNet-2), and to the
competing methods.
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Figure 8. Comparison of (a) the mean difference of distance intervals (MDDI) between the predicted distances and the
reference distances (manually measured by an art technologist) and (b) the success rate of images for which the distance
intervals were compared. Our ChainLineNet (complete task loss) is compared to the end-to-end training with the task losses
BCE+DICE+DSAC (ChainLineNet-1), to the training using only the segmentation task losses BCE+DICE (ChainLineNet-2),
to the competing methods, and to the ground truth on the test set.

4.4.2. Comparison to the State-of-the-Art

In this section, we measure the performance of our ChainLineNet compared to com-
peting methods. We retrained the UNet architecture (F = 16) of our previous work [6],
which was implemented in TensorFlow, for our renewed historical print dataset for 30
epochs using a learning rate of η = 0.0001 and a batch size of 5. During inference, the UNet
was executed patchwise, and two postprocessing methods were applied to the reassembled
segmentation output [6], which we refer to as PatchUNet-RANSAC and PatchUNet-Hough.
Secondly, we trained the deep Hough transform line prior method [12] for our line detec-
tion task, which we abbreviate as PatchDeepHough. The method was originally developed
for wireframe detection; thus, some modifications were necessary to make it applicable
to our task. We used their offline data augmentation, which quadrupled the number of
training patches, and trained the network from scratch for 50 epochs with early stopping
using a learning rate of η = 0.0004 and a batch size of 4. Due to the high complexity of the
voting matrix needed for the Hough transform, we were not able to increase the input size
of the network for inference, such that we used the default setting of 512× 512 and applied
the method patchwise. We added the following postprocessing steps to filter, merge, and
extend line segments to full lines: First, we computed the dominant orientation of the line
segments, i.e., horizontal or vertical. Then, we excluded all line segments with the opposite
orientation and whose Hough score was below 0.7. For the remaining line segments, we
walked along the perpendicular direction of the line segments and grouped the segments
within a neighborhood of 20 pixels. For each group, we used linear least-squares regression
to fit a line through the start and end points of the line segments. In the case of a vertical
main orientation of the lines, we switched the x and y coordinates for line fitting to obtain
more accurate results.

The quantitative results for line detection and parameterization for the test set con-
sisting of 48 images and in total 342 correct lines are summarized in Table 2 for precision,
recall, and the F1-score. ChainLineNet outperformed all machine learning methods with
an F1-score of 96.9 %, precision of 98.2 %, and recall of 95.6 %, being close to manual mea-
surements, which obtain an F1-score of 99.6 %. In comparison to PatchUNet-RANSAC,
which also performs quite well, we achieved an absolute gain of about 4 % in the F1-score.
PatchDeepHough detects too many false positive lines; thus, it only achieved poor preci-
sion and a clearly lower F1-score of 70.6 %. PatchUNet-Hough detects distinctively less
correct lines, resulting in a low recall and the lowest F1-score of 62 %.

The comparison for the pixel mean line error of true positive lines, depicted in Figure 7,
shows that all methods predict the line coordinates comparably accurately with an error
between 7.2 and 8.3 pixels. The result of ChainLineNet with 327 out of 342 correct lines is
the most reliable, as most lines were used to compute the mean line error.

Figure 8. Comparison of (a) the mean difference of distance intervals (MDDI) between the predicted distances and the
reference distances (manually measured by an art technologist) and (b) the success rate of images for which the distance
intervals were compared. Our ChainLineNet (complete task loss) is compared to the end-to-end training with the task losses
BCE+DICE+DSAC (ChainLineNet-1), to the training using only the segmentation task losses BCE+DICE (ChainLineNet-2),
to the competing methods, and to the ground truth on the test set.

4.4.2. Comparison to the State-of-the-Art

In this section, we measure the performance of our ChainLineNet compared to com-
peting methods. We retrained the UNet architecture (F = 16) of our previous work [6],
which was implemented in TensorFlow, for our renewed historical print dataset for 30
epochs using a learning rate of η = 0.0001 and a batch size of 5. During inference, the UNet
was executed patchwise, and two postprocessing methods were applied to the reassembled
segmentation output [6], which we refer to as PatchUNet-RANSAC and PatchUNet-Hough.
Secondly, we trained the deep Hough transform line prior method [12] for our line detec-
tion task, which we abbreviate as PatchDeepHough. The method was originally developed
for wireframe detection; thus, some modifications were necessary to make it applicable
to our task. We used their offline data augmentation, which quadrupled the number of
training patches, and trained the network from scratch for 50 epochs with early stopping
using a learning rate of η = 0.0004 and a batch size of 4. Due to the high complexity of the
voting matrix needed for the Hough transform, we were not able to increase the input size
of the network for inference, such that we used the default setting of 512× 512 and applied
the method patchwise. We added the following postprocessing steps to filter, merge, and
extend line segments to full lines: First, we computed the dominant orientation of the line
segments, i.e., horizontal or vertical. Then, we excluded all line segments with the opposite
orientation and whose Hough score was below 0.7. For the remaining line segments, we
walked along the perpendicular direction of the line segments and grouped the segments
within a neighborhood of 20 pixels. For each group, we used linear least-squares regression
to fit a line through the start and end points of the line segments. In the case of a vertical
main orientation of the lines, we switched the x and y coordinates for line fitting to obtain
more accurate results.

The quantitative results for line detection and parameterization for the test set con-
sisting of 48 images and in total 342 correct lines are summarized in Table 2 for precision,
recall, and the F1-score. ChainLineNet outperformed all machine learning methods with
an F1-score of 96.9 %, precision of 98.2 %, and recall of 95.6 %, being close to manual mea-
surements, which obtain an F1-score of 99.6 %. In comparison to PatchUNet-RANSAC,
which also performs quite well, we achieved an absolute gain of about 4 % in the F1-score.
PatchDeepHough detects too many false positive lines; thus, it only achieved poor preci-
sion and a clearly lower F1-score of 70.6 %. PatchUNet-Hough detects distinctively less
correct lines, resulting in a low recall and the lowest F1-score of 62 %.

The comparison for the pixel mean line error of true positive lines, depicted in Figure 7,
shows that all methods predict the line coordinates comparably accurately with an error
between 7.2 and 8.3 pixels. The result of ChainLineNet with 327 out of 342 correct lines is
the most reliable, as most lines were used to compute the mean line error.
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Next, we compare the chain line distance intervals to the reference measurements in
Figure 8. The chain line distance intervals computed using ChainLineNet for 47 out of
78 test images only differ by 0.68 mm from the reference intervals, which is an excellent
result, when we consider that the comparison of the manually annotated ground truth
lines and the reference lines differs by 0.63 mm. Plausible reasons for the measurement
inaccuracies are the conversion of the images of the artworks to millimeters, the fact that
the location where the line distances are measured can differ between manual and dig-
ital measurements, and that chain lines are approximated as straight lines. The other
tested machine learning methods show less precision for the distance interval computa-
tion. PatchUNet-Hough has a slightly higher mean difference, but only less than half of
the images are suitable for the comparison (see Figure 8b). PatchUNet-RANSAC has a
slightly lower success rate than ChainLineNet with their mean difference lying just above
1 mm. PatchDeepHough performs worst. With only a success rate of 27 % of the images,
their mean difference is above 2 mm.

The qualitative results are shown in Figure 9 for one example with horizontal chain
lines and in Figure 10 for an example with vertical chain lines. For both figures, the trans-
mitted light image of the artwork, the ground truth segmentation mask, and the ground
truth lines superimposed on the artwork are depicted in the first row. Figures 9d and 10d
show the raw segmentation outputs of the ChainLineNet that contain line segments and
noise. The noise is reduced in Figures 9e and 10e by 2D Fourier filtering. Here, the fil-
tered mask images are binarized for visualization, because only the points with maximal
intensity are selected for DSAC. In Figures 9f and 10f, the final line parameterization
results of ChainLineNet are shown, which are in high accordance with the ground truth
lines. Figures 9g and 10g show the binarized segmentation output of PatchUNet that is
also composed of line segments and noise. Two different postprocessing approaches
are applied to the PatchUNet output. PatchUNet-Hough (Figures 9h and 10h) detects
clearly fewer lines than PatchUNet-RANSAC (Figures 9i and 10i). The grayscale heat
map of PatchDeepHough in Figures 9j and 10j shows many clear lines, but also areas of
uncertainty. Due to the patchwise application, line segments are separately fitted in each
patch (Figures 9k and 10k), where the Hough voting score is indicated by the line segment
color ranging from low (blue) to high (red). PatchDeepHough predicts clearly too many
lines, as can be seen in Figures 9l and 10l. Despite the watermark that is included in the
paper structure of Figure 10a, all methods are able to detect chain lines that interfere with
the watermark.

Overall, our method achieves excellent performance, but there are some limitations.
In the case of bent wires, our method cannot determine the exact chain line, but only an
approximation, because we assumed straight lines for our model. Difficult images, where
the chain lines are densely covered with ink, the paper is in an abraded condition, or when
lines in the border area of the image are only partly depicted, can lead to false positives or
false negatives. Under very difficult image conditions, the application of DSAC can lead
to inaccurate line predictions, e.g., if a too large bounding box size is determined by our
method or the estimated rotation angle is not accurate enough. In these cases, the bounding
box might contain line segments or noise that do not belong to the actual line. Difficult
cases need to be reviewed by art technologists, but our method achieves a high success
rate such that it can greatly support the art technologists in their analysis of the artworks.
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(a) Transmitted light (b) Ground truth mask (c) Ground truth

(d) ChainLineNet mask (e) ChainLineNet filtered mask (f) ChainLineNet

(g) PatchUNet mask (h) PatchUNet-Hough (i) PatchUNet-RANSAC

(j) PatchDeepHough mask (k) PatchDeepHough segments (l) PatchDeepHough

Figure 9. Qualitative results of the chain line detection for one historical print containing horizontal chain lines. Transmitted
light image: Hieronymus Hopfer, Martin Luther as Augustinian monk with Holy Spirit as a dove, Etching, British Museum,
London, 1845-0809-1486; Photo © Thomas Klinke, courtesy of the Trustees of the British Museum; all rights reserved by the
respective museum.
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(a) Transmitted light (b) Ground truth mask (c) Ground truth

(d) ChainLineNet mask (e) ChainLineNet filtered mask (f) ChainLineNet

(g) PatchUNet mask (h) PatchUNet-Hough (i) PatchUNet-RANSAC

(j) PatchDeepHough mask (k) PatchDeepHough segments (l) PatchDeepHough

Figure 10. Qualitative results of the chain line detection for one historical print containing vertical chain lines and a
watermark. Transmitted light image (detail): After Lucas Cranach the Elder, Martin Luther as Junker Jörg, Collotype,
Kunstsammlungen der Veste Coburg, H.0064; captured by Thomas Klinke; all rights reserved by the respective museum.

5. Conclusions

We presented an end-to-end trainable deep learning method for chain line segmen-
tation and parameterization in historical prints. In the experiments, we showed that our
ChainLineNet achieves the best visual and quantitative chain line detection results for
our historical print dataset. Moreover, the comparison of the automatically computed
chain line distance intervals with the manually measured distance intervals by an art
technologist shows a low error of less than 0.7 mm. The high accuracy and reliability of our
method give the opportunity to automatically compare the chain line distances of a larger
number of historical prints in order to draw conclusions about the origin of the papers.
Thus, our automatic deep-learning-based method can be very beneficial to support the art
historical and technological research of museums and libraries. Future work could build on
the automatic chain line detection and distance computation to extract chain line distance
patterns and perform a similarity search to identify moldmates.

http://www.kunstsammlungen-coburg.de
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